
 

 

 

 

 

 

 

Field Energy Performance of an Insulating Concrete 
Form (ICF) Wall 
 

 

W. Maref, M. M. Armstrong, H. Saber, M. Rousseau, G. Ganapathy, M. 
Nicholls and M.C. Swinton  

 
IRC-RR-326 

 

 

 

 

 

 

 

 

 
 
March 2012 

 

guindonj
Typewritten Text

guindonj
Typewritten Text

guindonj
Typewritten Text

guindonj
Typewritten Text

guindonj
Typewritten Text

guindonj
Typewritten Text



 

 

  

 



iii 

 

Acknowledgements 

The authors wish to thank Mr. Silvio Plescia at the Canada Mortgage and Housing Corporation 

(CMHC) and Mr. Anil Parekh at Natural Resources Canada (NRCan) for contributing funding for 

this project and NRC for providing the funding to enable researchers to build, operate and 

maintain a state-of-the-art Field Exposure of Walls facility. 

 

Our thanks are also extended to Ross Monsour at Ready Mix Concrete Association of Ontario 

(RMCAO) for his contribution in providing the test specimens. 

 

Disclaimer 

This Project was partially funded by Canada Mortgage and Housing Corporation (CMHC) under 

Part IX of the National Housing Act, however the analysis, Interpretations and recommendations 

expressed in this report are those exclusively offered by the National Research Council Canada, 

Institute for Research in Construction. CMHC assumes no liability for any damage, injury, 

expense or loss that may result from the use of this report, particularly, the extrapolation of the 

results to specific situations or buildings. 

  



iv 

 

Executive Summary 

The National Research Council of Canada‘s Institute for Research in Construction (NRC-IRC) in 

collaboration with Canada Mortgage and Housing Corporation (CMHC) and Natural Resources 

Canada (NRCan) evaluated the dynamic heat transmission characteristics through two identical 

Insulating Concrete Form (ICF) wall assemblies.  The ICF specimens were provided by an 

industry partner – the Ready Mixed Concrete Association of Ontario (RCMAO). The walls were 

exposed to naturally occurring climate at the in the NRC-IRC Field Exposure of Walls (FEWF) 

test facility in Ottawa, Canada from 13-Oct-09 to 16-Sep-10.   

Heat flux and temperature data was collected from both of the wall assemblies.  However, the 

results from one wall assembly only (Wall 1) were chosen for detailed analysis, due to suspected 

interior overheating of Wall 2 and potentially erroneous heat flux data.  Error in heat flux data 

was discovered through comparison of measured data with results from the hygrothermal model 

hygIRC-C (Saber, 2011). 

The ICF wall had a measured pseudo-steady state R-value of RSI 3.77 [R21.4]. Additionally, 

correlations between the temperature at the exterior surface of the ICF and the exterior surface of 

the concrete revealed a buffering effect of approximately 5 days due to the mass of the ICF.  

Measured 15-minute heat flux data from Wall 1 were compared to the expected heat flux through 

a theoretical wall with identical steady-state R-value (RSI 3.77 [R21.4]) and no mass effect.  This 

analysis showed that the ICF moderated heat loss to and from the interior.  The interior heat flux 

through the wall was not following weather changes on the outside instantaneously.  This was 

interpreted as the buffering effect of the mass. The measured heating season peak in heat flux 

leaving the room was 8.3 W/m
2
, below the expected peak in heat flux without mass effect of 10.3 

W/m
2
.  The peak heat flux entering the room in summer was also reduced by the mass effect of 

the ICF, 2.2 W/m
2
, as opposed to an expected 5.6 W/m

2
 for a wall with no mass effect.  This may 

have implications for the sizing of heating and cooling equipment. 

Some seasonal storage effects were apparent. When the mass of the concrete was cooling (from 

September to December) heat losses from the room to the ICF were slightly lower than the 

expected heat losses for a wall with no mass effect.  When the mass of the concrete was warming 

up (February to June), heat losses from the room to the ICF were slightly higher than would be 

expected without mass effect.  This seasonal effect was small compared to the impact of the mass 

on peak heat losses and gains. 

The results from this experiment are limited to a single wall section and set of conditions.  

Modeling is suggested to further explore the optimization of ICF insulation thickness for different 

wall orientations and climate.  Whole house modeling would be required to explore the dynamic 

interaction of ICF‘s with solar gains and to quantify the impact of the ICF mass on annual energy 

consumption. 
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1 Introduction 
 

Increasingly, home builders are turning towards a variety of construction methods to improve 

thermal performance while reducing the cost of construction.  While Insulating Concrete Form 

(ICF) technology dates back to the late 1960s in Europe, ICF construction has only caught on in 

North America for use in residential and commercial construction over the last two decades 

(Hersh Servo AG, 2010).  Generally modern ICFs consist of stackable formwork made of 

expanded polystyrene foam, which is filled on site with concrete, and then remains in place to 

provide permanent insulation.  ICF technology offers the potential to improve air tightness and 

energy performance over the current practice of wood frame construction.  With the growing 

presence of ICF construction in the market, it is important to gain an understanding of their actual 

performance in the field, and the role played by the thermal mass of the concrete in regulating 

heat losses.   

A number of research projects have been performed on the thermal performance and thermal 

mass to investigate the potential of annual energy saving compared to traditional light-weight 

construction for example.  The benefit of thermal mass was extensively investigated, especially at 

the Oak Ridge National Laboratory (Burch et al., 1984a, Burch et al., 1984b, Burch et al., 1984c, 

Christian, 1991, Kosny et al., 1998, Kosny et al., 2001, and Kossecka and Kosny, 1998).  Petrie et 

al. (2001) conducted field investigation of two side-by-side houses in Knoxville, Tennessee.  The 

two houses were similar except one house had Insulating Concrete Form (ICF) exterior walls and 

the other house had conventional wood-framed exterior walls.  The results showed that the ICF 

house used 7.5% less energy than the conventional house.  This work has shown that the principal 

benefit of thermal mass on thermal performance is to dampen fluctuations in interior conditions 

during significant fluctuations in outdoor conditions.  Additionally, Petrie et al. (2001) conducted 

numerical simulations using DOE2 software to investigate the effect of different climates of six 

US cities (Phoenix, Minneapolis, Dallas, Boulder, Knoxville and Miami) on the energy 

consumption of both the ICF and conventional wood-framed houses.  The results of cooling, 

heating and total electricity usage showed that the thermal mass had benefits for both cooling and 

heating.  The ICF houses used 5.5% to 8.5% less energy annually than the conventional wood-

framed houses.  This range of saving (5.5% to 8.5%) agreed with Kosny‘s prediction of 4% to 

10% savings with ICF houses compared to conventional wood-framed houses for 10 US climates 

(Kosny et al., 2001).   

In 1999, NAHB Research Centre tested 3 side-by-side homes with floor area of 102 m
2
 (1098 ft

2
) 

to compare the energy performance of two ICF homes (one had an ICF plank system and one had 

an ICF block system) versus conventional wood-framed home (2x4 wall stud framing, sheathed 

with OSB, and insulated with fiberglass batt in the wall cavities).  The three homes were located 

on the same street in Chestertown, Maryland.  Also, the three homes had identical orientation, 

window area, roof construction, footprint, ductwork, and air handler systems.  The testing was 

conducted over a one-year period beginning in April 1998.  Heating consumption composed of 

two periods, April 1, 1998 through June 1, 1998 and October 6, 1998 through March 16, 1999.  

Cooling consumption represented the period from June 1, 1998 through September 22, 1998.  

This study showed that a 20% difference was noticed between ICF houses and the conventional 

wood-frame house‘s energy consumption.  This difference can be attributed primarily to the 

higher effective R-value of the ICF walls and continuous insulation at the slab.  The insulation for 

the walls of the ICF homes is R-20 while the wall insulation of the wood-framed home is R-13.  

The solid wall surfaces for all three homes make up approximately 44% of the total surface area 

of the homes (the remainder being made up of the ceiling area, windows, and doors). A 50% 

increase in the solid wall surface area resistance to conductive heat loss (R-20 compared to R-13) 

represented significant increased energy-efficiency.  The foundation/slab details showed the 

impact clearly on the wood-frame home and was demonstrated greater heat loss in February and 

greater heat gain in August as evidenced by the wood-frame home‘s more pronounced and direct 

response to outdoor temperature changes. Given the total area and the thermal conductivity of 
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materials involved, the foundation/insulation/slab detail of the wood-frame home represented a 

significant source of heat loss and gain not evidenced in the ICF homes. 

In 2001, the Portland Cement Association conducted a modeling study of the energy use of 

single-family houses with various exterior walls using DOE 2.1 software (Gajda, 2001).  This 

study presented two ICF options: (1) concrete sandwiched by two insulation layers, and (2) 

insulation sandwiched by two concrete layers.  The study examined the performance of eleven 

different types of exterior walls in 25 North American locations to determine the expected 

differences in energy use.  In this study, the only differences for a given location were the exterior 

wall type and the capacity of the HVAC system. The results showed that houses with concrete 

walls had lower heating and cooling costs than walls with light construction, and contributed to 

additional savings through a reduction in the required heating and cooling system capacity.  

In 2006, a project was conducted by Enermodal Engineering Limited for Canada Mortgage and 

Housing Corporation (CMHC) and the Ready Mix Concrete Associate of Ontario (RMCAO) to 

study the performance of a 7-storey insulating concrete form multi-residential building in 

Waterloo, Canada (Enermodal, 2006).  Temperatures through the wall assembly were monitored 

at eight locations from December 1
st
, 2005 to February 26

th
, 2006. The project reported little 

contribution of the concrete to the steady-state R-value.  During transient conditions, heat storage 

effects were reported.  While the concrete never supplied heat to the interior during the winter 

monitoring period, the measured data showed that concrete did temper heat loss to the exterior 

during the periods of cold weather.   

Recently, the National Research Council of Canada‘s Institute for Research in Construction 

(NRC-IRC) in collaboration with Canada Mortgage and Housing Corporation (CMHC) and 

Natural Resources Canada (NRCan) proposed evaluating the thermal response of two ICF wall 

assemblies in NRC-IRC‘s Field Exposure of Walls Facility (FEWF) for one year cycle of 

exposure to outdoor natural weathering conditions.  The FEWF allows field monitoring of the 

thermal response of side-by-side test wall specimens exposed to natural weathering on the 

exterior and exposed to controlled indoor conditions. 

 

2 Objectives 
 

The National Research Council of Canada‘s Institute for Research in Construction (NRC-IRC) in 

collaboration with Canada Mortgage and Housing Corporation (CMHC) and Natural Resources 

Canada (NRCan) evaluated the dynamic heat transmission characteristics through two Insulating 

Concrete Form (ICF) wall assemblies in the NRC-IRC Field Exposure of Walls (FEWF) test 

facility for a one year cycle 2009-2010 of exposure to outdoor natural weathering conditions. The 

ICF specimens were provided by an industry partner – the Ready Mixed Concrete Association of 

Ontario (RCMAO). The scope of work included the design of the experiments, the installation of 

test specimens, the commissioning of the instrumentation, the operation of the test facility, the 

monitoring, data collection & analysis to determine the field energy performance of the ICF 

system.  The objective of this project was to monitor the field performance of two ICF wall 

specimens for one year at the NRC Field Exposure of Wall Facility (FEWF), in order to 

understand and quantify the impact of the thermal mass of the concrete in the ICF wall system on 

heat losses and gains. 

The objective of this study is also to use the present NRC-IRC‘ hygrothermal model called 

―hygIRC-C‖ used to interpret the readings of the instrumentations and to improve the experiment 

design by selecting the appropriate locations of instrumentation.  Some results from this 

modelling study is presented in this report and detailed information can be found at Saber et al. 

(2011).  Next, the present model is benchmarked by comparing its prediction against the test 

results.  After gaining confidence in the simulation tool, it will be used to investigate the effect of 
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thermal mass of the concrete and EPS on the thermal response of the ICF assembly subjected to 

different Canadian climate conditions. 

3 Methodology 
 

Two identical ICF wall specimens were installed side by side in the FEWF test bay on the NRC 

Campus in Ottawa, Canada. The walls were located on the first floor of a two storey facility, with 

West exposure (Figure 1). A chamber provided controlled indoor conditions (~21°C, 30% 

humidity), and the walls were exposed to naturally occurring Ottawa climate (with an average of 

4602 heating degree days <18°C (Environment Canada, 2010). Data was collected at 15-minute 

intervals from October 13
th

, 2009 to September 16
th

, 2010.  

 

 

 

3.1 Construction 
 

The ICF forms were assembled and thermocouples were installed on the interior of the form prior 

to pouring the concrete. The concrete was poured into the forms July 28
th

 2009, with the forms 

sitting outside the FEWF test bay. The specimens were allowed to cure outdoors (protected from 

direct precipitation) for 28 days before being lifted into place by forklift on August 25
th

 2009. 

The ICF wall specimens measured 1828 x 1676 mm (71 15/16 x 66 in.) and featured 152 mm (6 

in.) thick concrete surrounded by 64 mm (2.5 in.) of EPS foam on all sides, and 51 mm (2 in.) of 

EPS foam on the base (Figure 2). The ICF specimens were separated from surrounding 

construction by an additional 102 mm (4 in.) of XPS foam (Figure 3).  This thickness of 

insulation was determined through simulation with hygIRC-C.  The thickness was chosen in order 

to prevent heat losses from the top, bottom and sides of the wall specimens, and for heat transfer 

to predominantly occur at the interior and exterior surfaces of the ICF.  Chases 204 mm (6 in.) 
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wide were situated on either end of the test bay and between walls to provide space for running 

wires.  The completed chases were filled with batt insulation. The finished walls included an 

interior drywall finish and exterior vinyl siding.  Detailed documentation of the construction 

process is provided in Appendix A. 

 

 

PVC lap siding attached to ICF

ICF:  2.5 in. (64 mm) EPS foam

            6 in. (152 mm) concrete

         2.5 in. (64 mm) EPS foam

Drywall 0.5 in. (13 mm)

Insulated and sealed space

(after installation)

0.5 in. (13 mm) dia. threaded rod, 

    cast in place

Steel plate bolted to two rods for forklift

Steel plate and bolts removed from 

    final installation

4 in. (102 mm) XPS foam to separate 

    ICF from other elements

 1  2  3  4 
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3.2 Instrumentation 
 

Instrumentation was located at four layers through each wall, as shown in Figure 2: 1) between 

the lap siding and the exterior EPS foam layer of the ICF; 2) on the face of the concrete behind 

the exterior EPS foam layer; 3) on the face of the concrete behind the interior EPS foam layer; 

and 4) between the drywall and the interior EPS foam layer of the ICF.  At layers 2 and 3, two 

thermocouples were installed prior to pouring the concrete at each of the five instrumentation 

locations shown in Figure 3, for a total of 10 thermocouples per layer.  Thermocouples were 

doubled at these locations as a precaution, in case damage to the sensors occurred during the 

pouring and curing of concrete.  At layers 1 and 4, a total of four thermocouples were installed at 

all instrumentation locations except the bottom right location. The average temperature of each 

layer was used in this analysis and was obtained by averaging the readings of all thermocouples 

on each layer.  

In each of the four layers, a single heat flux transducer was located at the central instrumentation 

location. This paper refers to the heat flux measured at location 2 (HF2) and location 3 (HF3) in 

the analysis. During the first few months of the experiment, HF2 and HF3 were positioned at the 

interface of the foam and the concrete.  This proved a complex task due to the ridges on the 

interior side of the foam.  To provide a flat surface for the heat flux transducers so that the 

measured heat flux component was perpendicular to the surface, sections of foam were removed 

prior to pouring the concrete.  The ridges of the removed section were filled in with concrete and 

cured (Figure 4) before the foam section was put back into position.  However, this meant that the 

heat flux transducer was not exposed to a uniform material – but rather alternating lines of foam 

and concrete on one side. This resulted in erroneous readings, based on those expected from the 

nominal R-value of the system. Simulation using hygIRC-C was required to interpret the 

erroneous results and try to improve the experiment design by repositioning the heat flux 

transducers at critical locations to avoid the fin effect. A model was used to re-design and correct 

the location of the HFTs, and benchmarked later on. Numerical simulations were conducted to 

investigate the differences in the predicted heat fluxes at different locations in the foam (at the 

outer surface of the foam, middle of the foam and foam-concrete interface). The numerical results 

4 in 

 [102 mm]

71
15
16

 in 

 [1828 mm]

66 in 

 [1676 mm]

9 in 

 [229 mm]

4 in 

 [102 mm]

2
1
2
 in 

 [64 mm]

2 in 

 [51 mm]

Location of 
instrumentation 



6 

 

showed that the differences caused by location were very small, and were approximately within 

the uncertainties of the heat flux transducers (Saber, 2010b). These small differences were due to 

the small thermal mass of the foam. Consequently, in order to expose the heat flux transducers to 

a uniform material, HF3 was repositioned on January 14
th

 between two blocks of foam (Figure 5).  

The same correction was made to HF2 on January 29
th

. Thereafter, the predicted results from the 

simulation could be compared directly with the measured data. Temperature and heat flux data 

was sampled every minute, and the average was stored every 15-minutes.  

 

 

 

 

 

3.3 Material Properties Affecting the Thermal Response of Wall Systems 
 

The thermal properties of the concrete layer of the ICF wall assembly are listed in Table 1 

(Enermodal, 2006).  Recently, the thermal conductivity and density of the type of EPS layer that 

was used in the ICF wall were measured at the NRC-IRC‘s material characterization laboratory at 

different temperatures.  The test method used to measure the thermal conductivity of EPS was 

ASTM C 518-04 (2007).  The measured thermal conductivity of EPS, 
eff  (in W/(mK)), as a 

function of temperature, T  (in 
o
C), that was used in the numerical simulation is given as: 

0308.010062.1 4   Teff        (1) 

The uncertainty of the measured thermal conductivity of EPS was +1.5%.  The measured density 

of EPS was 22.7 kg/m
3
 (uncertainty = +0.6 kg/m

3
).   
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There are four main parameters that affect the thermal response of a wall system.  These 

parameters are: 

1. Volumetric heat capacity, sometimes called thermal mass.  This is a measure of the 

ability of the material to store thermal energy.  In the case of the ICF wall, the concrete 

has the ability to store energy of 75 times that for EPS.   

2. Thermal diffusivity,  = eff/(Cp).  This is the ability of the material to conduct 

thermal energy relative to its ability to store thermal energy.  The material with low 

thermal diffusivity responds slower to changes in the thermal environment compared to 

that with high thermal diffusivity.  As shown in Table 1, the EPS respond to the thermal 

changes 3 times faster than the concrete.   

3. Thermal resistance (R-value).  It is a measure of the material ability to resist the heat 

flow.  As shown in Table 1, both the ICF components have approximately an R-value of 

(R-20).  By including the thermal resistance of the drywall in an ICF wall assembly, the 

total resistance can be 4.01 m
2
K/W (R-22.8).  Note that for the ICF wall, the thermal 

resistance of the concrete is much lower than the EPS.  As such, the main contribution of 

the concrete in the ICF walls to thermal performance is to provide thermal mass and 

ability to store thermal energy. 

4. Characteristic time constant, , is another parameter that affects the transient response of 

a wall system.  It is defined as  /2

pL , where 
pL  is the characteristic heat 

penetration length, which is equal to the thickness of material layer,  .  The 

characteristic time constant is a measure of the time that a material layer takes to 

complete 63.2% of the transient portion of its response due to a change in its thermal 

environment (63.2% response corresponds to 38.2% deviation from a steady-state 

condition, Rabin and Rittel, 1999).  As shown in Table 1, the characteristic time 

constant of a 6‖ thick concrete (9.53 hr) is much larger than that for the 2.5‖ thick EPS 

(0.93 hr).  As such, the exterior and interior EPS layers respond quickly to the changes in 

the indoor and outdoor conditions.  On the other hand, the concrete layer responds 

slowly to changes of thermal environment resulting in a small change in its temperature 

as will be shown later.   

 

Properties Concrete EPS
*
 

Thickness, , mm (inch) 152.4 (6") 63.5 (2.5") 

Thermal Conductivity, eff (W/(m.K)) 1.4 0.0332 

Density,  (kg/m
3
) 2,350 22.7 

Specific Heat, Cp (J/(kg.K)) 880 1,210 (ASHRAE) 

Volumetric Heat Capacity, Cp (kJ/(m
3
.K)) 2,068 27.47 

Thermal Diffusivity,  = eff/(Cp) (m
2
/s) 6.77 x 10

-7
 1.21 x 10

-6
 

Characteristic Time Constant,  = 
2
/ (hr) 9.53 0.93 

Thermal Resistance, RSI = /eff (m
2
.K/W) 0.109 1.913 

Total Thermal Resistance, R (ft
2
 hr 

o
F/BTU) 22.3

#
 

*
 Properties at 23

o
C 

#
 Value does not include the effect of thermal bridging due to the plastic spanners 
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4 Results 

4.1 Outdoor Air Temperature 
 

Outdoor air temperature data for the full field trial period is presented in Figure 6. This data is 

from the Ottawa International Airport (Environment Canada, 2010), located approximately 15 km 

South of the field trial location.  The test period featured 3766 heating degree days below 18°C, 

and 322 cooling degree days above 18°C.  The maximum temperature was 34.5°C and occurred 

July 8
th

 2010.  The minimum temperature was -23.0°C, attained on January 30
th

 2010.   The 

average, maximum and minimum monthly temperatures are given in Table 2.  

 

Date 
Average 
Outdoor T (°C) 

Max Outdoor T 
(°C) 

Min Outdoor T 
(°C) 

13-Oct-09 to 31-Oct-09 5.3 14.9 -3.3 

Nov-09 4.1 17.3 -6.1 

Dec-09 -6.1 8.1 -22.3 

Jan-10 -7.3 8.0 -23.0 

Feb-10 -5.2 4.0 -17.2 

Mar-10 3.1 16.4 -11.5 

Apr-10 9.6 28.5 -0.7 

May-10 15.8 34.2 -0.5 

Jun-10 17.8 28.8 8.5 

Jul-10 22.7 34.5 10.2 

Aug-10 20.2 32.0 9.5 

01-Sep-10 to 16-Sep-10 16.6 31.9 6.8 
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4.2 Indoor Air Temperature 
 

The temperature of the air on the interior side of the ICF wall specimens is controlled by an 

indoor chamber.  In winter, the chamber temperature is maintained above a 21°C setpoint by a 

heater. When the temperature drops below the setpoint, the heater is turned on. However, there is 

no control to prevent the chamber from overheating due to solar gains to the surrounding room.  

This overheating occurs primarily in the spring.  

In summer, the chamber was opened and the maximum air temperature was controlled by the 

house‘s central cooling system.   
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4.3 Surface Temperature 
 

The average temperatures of the four different instrumentation layers are plotted in Figure 8: the 

exterior surface of the ICF (behind the siding), the exterior surface of the concrete, the interior 

surface of the concrete and the interior surface of the ICF (behind the drywall). The temperature 

measurements were taken every 15 minutes.  The temperatures at the exterior and interior surface 

of the concrete are similar, due to the concrete‘s high conductivity. The largest difference 

between these two surface temperatures was 1.4°C, occurring on January 29
th

 2010. The 

temperatures at the surface of the concrete follow the general trends in outdoor temperature, 

reaching minimum temperatures in January.  In summer, concrete surface temperatures are 

relatively steady – remaining around 20°C throughout the cooling season.  

The interior surface temperature of the ICF (behind the drywall) is strongly influenced by the 

indoor air temperature – as controlled by the indoor chamber.  In April and May, the interior 

surface temperature of the ICF was high, due to the overheating of the indoor air – as described in 

Section 4.2.  

The temperature at the exterior of the ICF (behind the cladding) follows outdoor air temperature, 

and is also influenced by solar gains on the cladding in the afternoon/evening. 
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4.3.1 Winter Surface Temperature 

A detailed graph of the temperatures during February is provided in Figure 9. In addition to ICF 

and concrete surface temperatures, this graph also includes outdoor and chamber air temperatures. 

The exterior surface temperature of the ICF (behind the cladding) fluctuates daily with changes in 

outdoor temperature, and also heats up on sunny days up to 10°C above outdoor air temperature.  

The concrete provides a buffering effect – and its surface temperatures do not follow these 

up/down swings.  The temperatures at both the interior and exterior surface of the concrete are 

relatively steady, increasing gradually from ~5°C to ~12°C with the general trend of increasing 

outdoor temperature.  During this period, the indoor temperature was controlled in the chamber 

by the heater, and overheating did not occur.  The temperature on the interior surface of the ICF 

(behind the drywall) was approximately 3°C cooler than the chamber air temperature.  It looks 

like night radiations lowers the surface temperature below ambient conditions. 
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4.3.2 Summer Surface Temperature 

Detailed 15-minute temperature measurements from August are shown in Figure 10. Throughout 

this month, the concrete surface temperatures are similar to the interior surface temperature of  

the ICF (plotted in red).  All three surface temperatures (interior surface of the ICF, and interior 

and exterior surface of the concrete) are slightly (~1.5°C) cooler than the indoor chamber air 

temperature.  The exterior temperature (plotted in black) fluctuates based on outdoor temperature, 

and is heated above the air temperature by solar radiation on sunny afternoons/evenings. 
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4.3.3 Relationship between Concrete Exterior Surface Temperature and 
ICF Exterior Surface Temperature 

There is an apparent relationship between concrete exterior surface temperature and the general 

trend in exterior temperatures.  To explore this further, the average daily concrete exterior surface 

temperature is plotted against the average daily exterior ICF surface temperature in Figure 11.  

The resulting relationship is linear with an R-square value of 0.9052. 

Subsequently, the average temperature was plotted against a moving average of the exterior 

temperature of the ICF for the previously 2 days, 3 days, 4 days, etc. until the relationship with 

the strongest correlation was identified (with the highest R-squared value).  The strongest 

relationship, with R-squared value of 0.971 was identified for the 5-day average (Figure 12).  

Thereby, the exterior concrete surface temperature has strong dependence on the ICF exterior 

temperature history from the previous 5 days.  This gives an indication of the extent of the 

buffering effect of the ICF mass, even on the exterior side of the mass. 

The average daily temperature at the exterior surface of the concrete is plotted alongside the 

moving 5-day average of the exterior surface temperature of the ICF in Figure 13.  As expected 

from the high correlation factor (Figure 12), the two trends have a similar shape. 
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4.4 Heat Flux 
 

The measured heat flux data (15-minute resolution) is presented in Figure 14. Heat flux flowing 

from the interior to the exterior side of the wall is considered positive. The higher the heat flux, 

the larger the heat loss from the interior, and the greater the load on the heating system. 

Prior to January 14
th

 for HF3 and January 29
th

 for HF2, the positioning of the heat flux 

transducers resulted in erroneous readings (as described in Section 3.2). For this reason, measured 

heat flux data from the first few months of the experiment could not be used in this analysis. Heat 

flux from these months had to be calculated using the following method. 

 

Where: Tin: interior temperature in °C 

Text: exterior temperature in °C 

q: heat flux in W/m
2
 

 

First, the average R-value of the foam either side of the concrete was calculated using the 

measured heat flux data (from the period following the repositioning of the heat flux sensors) and 

the delta T across the foam insulation, using Equation 1. The resulting R-values were: RSI 1.73, 

=0.09 (R 9.81, =0.52) for the interior foam, and 1.79=4.32  (R 10.2 =24.5) for the exterior 

foam. The R-value for interior foam is in close agreement with the expected R-value of RSI 1.716 

(R 9.74) based on ASHRAE‘s published value of thermal conductivity, 0.037 W/mK, (ASHRAE, 

2009) and the thickness of the EPS, 64 mm (2.5 in.). The R-value of the exterior foam has a very 

high standard deviation due to large fluctuation in heat flux, and periodic low delta T across the 

exterior foam leading to reduced accuracy. Since both foams are identical, RSI 1.73 (R9.81) was 

assumed for both the exterior and interior insulation.  This R-value was then combined with 

measured delta T across the interior and exterior insulation to predict the heat flux at location 2 

and 3 for the first half of the experiment.  This is referred to as ―calculated‖ heat flux in Figure 

14. 
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The heat flux at the exterior of the ICF followed daily temperature swings caused by outdoor air 

temperature and solar effects in the afternoon, and ranged from 14.5 W/m
2
 to -13.0 W/m

2
. By 

contrast, the heat flux from the interior side of the ICF did not respond to the daily fluctuations in 

temperature, but rather followed the general temperature trend. The concrete mass evidently 

provided a buffering effect.  As a result, the heat flux from the interior ranged from -2.2 W/m
2
 to 

8.3 W/m
2
, primarily flowing from interior to exterior during the experiment period.   

 

A detail of measured heat flux at the interior and exterior of the ICF during February is shown in 

Figure 15. The heat flux at the exterior of the concrete (HF2, plotted in blue) varies with outdoor 

conditions.  When conditions outside are cold, heat flux is high, and when conditions outside are 

warm, heat flux is low.  By contrast, heat flux leaving the room (HF3, plotted in green) is fairly 

constant since the concrete maintains a relatively steady trend in temperature, as seen in Figure 9. 

The heat flux leaving the room through the ICF wall is not immediately affected by cold nights 

outside, but also does not get the immediate benefit of reduced heat losses on warm days (Figure 

15). 
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A detail of summer heat flux is given in Figure 16. The more negative the heat flux at HF3, the 

higher the heat gains to the interior of the home, and the higher the load on the cooling system. 

Because the temperature of the concrete is very close to the temperature of the interior throughout 

this period (Figure 10), there is almost no heat loss or gain at the interior (see HF3, plotted in 

green).  The heat flux measured at the exterior foam (HF2, plotted in blue) by contrast cycles up 

and down.  This is similar to the effects that would be seen in a wall with light weight 

construction and little mass effect (for more details see Section 4.7).   

Since the ICF wall has very little heat flux from the interior during this time period, it would not 

experience a significant contribution to the peaks in cooling load from the ICF wall, as would be 

expected without the mass effect.  However, the room does not immediately experience the 

benefit from free cooling overnight: rather, the free cooling is absorbed by the mass and 

presumably this helps to temper the effects of high outer surface temperature swings during the 

day, at times when peak air-conditioning would normally be experienced, both by the house and 

by the electric utility. 
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4.5 Pseudo Steady State R-value 
 

On occasions where the heat flux on the exterior and the heat flux on the interior of the ICF are 

equal, the mass in the wall is neither storing nor releasing heat at that particular instant in time 

because its average temperature is temporarily constant (for example at the top or bottom of a 

temperature swing).  During this condition, the wall is considered to be in a temporary or 

‗pseudo‘ steady state condition, where all of the heat transferred during that small time period is 

due to R-value only (see example in Figure 17). Using the measured data (delta T across the 

assembly and the heat fluxes) and Equation 1, the pseudo steady state R-value was calculated for 

all occasions where the absolute difference in measured heat fluxes (HF3-HF2) was less than 0.3 

W/m
2
.  The result for Wall 1 is plotted in Figure 18.  The average steady state RSI is 3.77 m

2 

°
C/W,  = 0.15 (R 21.4,  = 0.84).  
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4.6 Heat absorbed and released by the concrete 
 

Using the measured data, the heat absorbed and released by the concrete during each 15 minute 

timestep can be determined in two ways: using the difference in measured heat flux (Equation 2), 

and using the change in the average temperature of the concrete (Equation 3) – obtained by 

averaging the temperatures at the exterior and interior surface of the concrete (layers 2 and 3). 

 

 

Where:  Q: total heat, Wh 

qin: heat flux at the interior, W/m
2
 

qext: heat flux at the exterior, W/m
2
 

A: interior surface area of concrete, 2.76 m
2
 

t: timestep, 0.25 h  
 

 

Where: Q: total heat, Wh 

ρ : density of concrete, 2350 kg/m
3
 

V: volume of concrete, 0.42 m
3 

Cp: specific heat capacity of concrete, 0.244 Wh/kg°C (880 J/kgK) 

Ti: Average temperature of concrete at current time, °C 

Ti-1: Average temperature of concrete at previous time, °C 

 

The total daily heat absorbed (+ve) or released (-ve) by the concrete in the ICF is plotted in 

Figure 19. Both methods of calculating the heat absorbed and released give an approximately 

similar result.  Small differences are present, and may be due to the assumed properties for the 

concrete (Cp=880 J/kgK,   ρ=2350 kg/m
3
), or the accuracy of the heat flux transducers.  The 

similarity of the two trends gives confidence in the heat flux transducer readings. 
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4.7 Impact of mass on heat flux 
 

The heat flux at the interior of the ICF, leaving the interior of the home, is of greatest interest 

since it has an impact on heating and cooling system requirements and also a potential impact on 

the sizing mechanical equipment. For this reason, the performance of the ICF was compared with 

the theoretical performance of the same wall without mass effect.  Heat flux without mass (due to 

conduction alone), was determined using Equation 1, the steady state R-value (RSI 3.77 +4% [R 

21.4 +4%]) and the measured average temperatures at the exterior and interior surface of the ICF 

throughout the experiment.  While the wall itself may have some small impact on these measured 

temperatures, this impact was assumed to be small, and verified to be small in a subsequent study.  

 

The resulting comparison of the wall with and without mass is shown in Figure 20. Without 

thermal mass, the heat flux varies significantly with change in outdoor temperature, following 

daily swings.  With the effect of thermal mass, however, the heat flux varies only slightly during 

each day.  
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Details of this mass/no mass comparison for February and August are provided in Figure 21 and 

Figure 22 respectively.  In February, heat flux on the interior side of the ICF wall is fairly steady.  

Whereas, predicted heat flux at this same location in a wall with no mass fluctuates on a daily 

basis with changes in outdoor temperature.  In August, the measured heat flux at the interior of 

the ICF is close to zero.  During this same period, the calculated heat flux for the wall with no 

mass cycles daily above and below zero: at night heat is lost from the room (+ve heat flux), and 

during the day heat is gained by the room (-ve heat flux).  Heat gains in summer contribute to the 

cooling load of the air conditioning system i.e additional cooling is required in the room to 

maintain constant temperature. 
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4.7.1 Monthly heat loss and gain 

The total monthly heat loss, heat gain and net heat loss (loss minus gain) from the room to the 

wall are listed in Table 3. This table includes the measured heat loss/gain for ICF Wall 1 and the 

calculated heat loss/gain for a wall with no mass and RSI 3.77 (R 21.4). 

Despite the mass of the ICF wall providing a buffering effect against daily fluctuations in outdoor 

temperature (as shown in the previous section), there is only a small difference in the cumulative 

monthly heat loss between the measured ICF value and the expected value for a wall with no 

mass.  This is illustrated in the bar chart in Figure 23, and the heating season cumulative graph in 

Figure 24.  On a monthly basis there is evidence of the mass buffering effect: The ICF wall shows 

lower cumulative heat loss than the ―no mass‖ wall from October to December, as the ICF stores 

heat as the general trend in outdoor temperature drops. From January through May, the opposite 

is true – wth the ICF wall having a higher cumulative heat loss, as it is slower to respond to 

warming outdoor temperatures than the ―no mass‖ wall. Over the full heating season (Figure 24), 

there was only a 1% difference in cumulative heat loss. This difference falls within the accuracy 

of heat flux sensor readings. 

 

 

In summer, the cumulative monthly heat gain to the interior of both walls is relatively small – 

compared to the winter heat losses (see Figure 25).  However, the percentage differences in heat 

gain between the ICF wall and the ―no mass‖ wall are larger.  Over the cooling season, thanks to 

the mass buffering effect, the ICF wall had a 60.8% lower cumulative heat gain than the wall with 

―no mass‖ (Figure 26). 
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ICF  Wall with no mass*  

Difference due to mass (HFT 3) RSI 3.77 (R 21.4) 

Date 

Measured 
Heat 
Loss 
from 

Interior, 
kWh/m

2
 

Measured 
Heat Gain 

to 
Interior, 
kWh/m

2
 

Net 
Measured 

Heat 
Loss, 

kWh/m
2
 

Calculated 
Heat Loss 

from 
Interior, 
kWh/m

2
 

Calculated 
Heat Gain 
to Interior, 

kWh/m
2
 

Net 
Calculated 
Heat Loss, 

kWh/m
2
 

Heat 
Loss 
from 

Interior, 
kWh/m

2
 

Heat Gain 
to Interior, 

kWh/m
2
 

Net Heat 
Loss, 

kWh/m
2
 

13-Oct-09 to 31-Oct-09 1.53 0.00 1.53 1.63 0.00 1.62 -0.10 0.00 -0.09 

Nov-09 2.70 0.00 2.70 2.84 0.00 2.84 -0.13 0.00 -0.13 

01-Dec-09 to 26-Dec-09 3.55 0.00 3.55 3.75 0.00 3.75 -0.20 0.00 -0.20 

Jan-10 4.61 0.00 4.61 4.55 0.00 4.55 0.06 0.00 0.06 

Feb-10 4.29 0.00 4.29 4.02 0.00 4.02 0.27 0.00 0.27 

Mar-10 3.79 0.00 3.79 3.67 0.00 3.66 0.13 0.00 0.13 

Apr-10 2.89 0.00 2.89 2.73 0.02 2.71 0.16 -0.02 0.18 

01-May-10 to 28-May-10 
& 31-May-10 1.70 0.08 1.62 1.65 0.27 1.38 0.05 -0.18 0.23 

Jun-10 1.27 0.06 1.21 1.26 0.19 1.07 0.01 -0.12 0.14 

01-Jul-10 to 20-Jul-10,  
26-Jul-10 to 31-Jul-10 0.23 0.14 0.09 0.45 0.43 0.01 -0.22 -0.30 0.07 

Aug-10 0.08 0.20 -0.12 0.58 0.42 0.15 -0.50 -0.22 -0.28 

01-Sep-10 to 16-Sep-10 0.55 0.07 0.49 0.83 0.08 0.75 -0.28 -0.01 -0.27 
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* incomplete months (see Table 3) 
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*Incomplete months (see Table 3 Comparison of the Total Monthly Heat Gain and Losses at the 

interior of an ICF and an RSI 3.77 (R 21.4) wall with no mass.) 
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4.7.2 Monthly maximum and minimum heat flux 

 

A monthly comparison of 15-minute measured heat flux at the interior side of the ICF, and 

predicted heat flux at this same location for a wall with no mass is given in Figure 27. Each point 

on this graph indicates the average monthly heat flux for either the ICF wall (blue) or the no mass 

wall (pink).  The top and bottom of the bars associated with each point indicate the monthly 

maximum and minimum 15-minute heat flux values. 

 

While the total monthly heat loss is similar for the two walls (see Section 4.7.1), the maximum 

and minimum values differ as a result of the buffering effect of the mass.  The measured 15-

minute peak in heat flux for the ICF was 8.3 W/m
2
 (Feb-10), and the peak 15-minute heat flux 

without mass is predicted to be 10.3 W/m
2
 (Jan-10).  This 2.0 W/m

2
 different in peak heat flux 

would likely have an impact on the heating load of a home, and the sizing of heating equipment. 

 

In summer, the minimum heat flux for the ICF wall was -2.2 W/m
2
. The expected minimum heat 

flux across the wall with no mass is -5.6 W/m
2
, resulting in a 3.4 W/m

2
 higher cooling load.  

Again, this could have implications for the sizing of an air conditioning system.  

 

The monthly maximum and minimum 15-minute heat flux values are provided in Table 4. 
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Maximum 15-minute Heat Flux Minimum 15-minute Heat Flux 

ICF  
Measured 
Heat Flux  
(HFT 3) 

RSI 3.77 
(R 21.4) 

Wall with 
no mass 

calculated 
heat flux Difference 

ICF  
Measured 
Heat Flux  
(HFT 3) 

RSI 3.77 
(R 21.4) 

Wall with 
no mass 

calculated 
heat flux Difference 

Date W/m
2
 W/m

2
 W/m

2
 W/m

2
 W/m

2 
W/m

2
 

13-Oct-09 to 
31-Oct-09 

5.3 6.9 -1.6 2.0 -0.6 2.6 

Nov-09 5.1 6.4 -1.3 2.6 -0.1 2.7 

01-Dec-09 to 
26-Dec-09 

7.9 10.1 -2.3 3.9 1.5 2.4 

Jan-10 7.9 10.3 -2.4 4.5 2.1 2.5 

Feb-10 8.3 9.4 -1.2 4.5 1.1 3.4 

Mar-10 7.1 8.7 -1.6 3.3 -1.6 4.9 

Apr-10 6.2 6.5 -0.3 1.8 -2.6 4.4 

01-May-10 to 
28-May-10 
&31-May-10 

5.6 6.2 -0.6 -1.8 -5.6 3.8 

Jun-10 5.6 5.8 -0.2 -1.5 -4.3 2.8 

01-Jul-10 to 
20-Jul-10,  
26-Jul-10 to 
31-Jul-10 

2.4 3.9 -1.5 -2.2 -4.9 2.7 

Aug-10 1.1 3.4 -2.3 -1.6 -5.0 3.4 

01-Sep-10 to 
16-Sep-10 

3.1 4.9 -1.7 -2.0 -4.6 2.6 
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5 Wall 1 compared to Wall 2 
 

The analysis in this report centres on results from the first of the two wall specimens – ICF Wall 

1.  While data was collected from both walls, the ICF Wall 2 results were discarded from the 

analysis due to the reasons outlined in this section. 

5.1 Difference in Interior Temperature 
 

Even though Wall 1 and Wall 2 were exposed to the same naturally occurring outdoor conditions, 

and the same interior controlled chamber conditions, there were significant differences in 

measured temperatures.  The average monthly surface temperatures of the two ICF walls are 

compared in Figure 27.  The largest difference between the two walls is seen at the interior 

surface of the ICF. This difference is shown in greater detail inFigure 28.  In this graph, the 15-

minute average interior surface temperature is plotted for the two ICF wall specimens on the 

secondary y-axis (right axis), and the difference between the two curves is plotted in blue on the 

primary y-axis (left axis). Starting in February, The Wall 2 ICF interior surface temperature was 

warmer than the Wall 1 ICF interior surface temperature – typically between 0.5 and 1°C warmer. 

For a short period between mid-May and mid-June Wall 2 temperature was up to 3°C warmer 

than the Wall 1 ICF interior surface temperature.   

The location of the heater in the interior chamber and its mode of operation is a likely explanation 

for the difference in interior ICF surface temperature.  The heater in the chamber is a standard 

home space heater with internal fan.  When the setpoint temperature in the chamber is satisfied 

(as measured by an RH&T sensors mounted centrally in the chamber), the power to the heater is 

shut off.  As a result, both the heater‘s heating coil and the internal fan shut off.  Natural 

operation of the heater would require the internal fan to run to dissipate heat for a short period of 

time after the heat coil was shut off.  However, the control system simply shut off the power to 

both at once, thereby leaving the heating coil warm.  The chamber heater is located near Wall 2.  

The heater is aimed away from the surface of Wall 2.  However, when the heater turns off 

abruptly heat that would otherwise be circulated to the full chamber potentially has a larger 

impact on the surface of Wall 2 (in closer proximity) than the surface of Wall 1.  This could 

potentially explain why differences in surface temperature between the two walls increased in 

warmer weather (in the spring), when the heater (and fan) would operate less frequently, and also 

why the temperature difference disappeared in August.     
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5.2 Difference in Heat Flux 
 

Measured 15-minute heat flux from Wall 1 and Wall 2 are compared in Figure 29. Each point on 

this graph indicates the average monthly heat flux for either the Wall 1 (blue) or Wall 2 (pink).  

The top and bottom of the bars associated with each point indicate the monthly maximum and 

minimum 15-minute heat flux values. The average, maximum and minimum measured monthly 

heat flux values for Wall 2 are generally lower than the measured monthly heat flux for Wall 1.  

 

 

In order to determine which heat flux values (Wall 1 or Wall 2) are most accurate, the values 

were compared to modeling results.  For a full description of the model and comparison, refer to 

the ICF model report by Saber, 2011.  The model-predicted heat flux is compared to the measured 

heat flux in Figure 30 and Figure 31 for Wall 1 and Wall 2 respectively.  The initial conditions for 

the model were different than the conditions at the start of the experiment – thus the comparison 

can only be considered after the first two weeks.  Wall 1 measured heat flux compares closely to 

the modeled heat flux for the full period.  Wall 2 measured heat flux is also close to the model 

prediction for the first portion of the experiment, but differs from 17-May-10 onwards. On this 

date, the heat flux transducer at location HFT3 in Wall 2 was replaced, and unfortunately this 

resulted in erroneous data. 

Due to the overheating of the interior of Wall 2, and the likely error in Wall 2 heat flux (HFT3) 

measurement after 17-May-10, Wall 1 data was chosen for the detailed analysis presented in this 

report.    
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6 Conclusions 
 

Two ICF wall specimens were monitored at the NRC Field Exposure of Wall Facility (FEWF) 

from October 13
th

 2009 to September 16
th

, 2010.  

In general, the measured heat flux and temperature data from the field trial revealed that the 

concrete added very little to the overall R-value of the ICF under steady-state conditions. The 

measured pseudo-steady state R-value of the ICF in this study was RSI 3.77 (R21.4). 

However, during transient conditions, the data demonstrated that the concrete significantly 

moderated heat loss to and from the interior, providing a 5-day buffering effect. By doing so, the 

ICF wall was shown to reduce the 15-minute peak in heat gains to or losses from the room.  The 

measured heating season peak in heat flux leaving the room was 8.3 W/ m
2
, below the expected 

peak in a wall without mass effect: 10.3 W/m
2
. Similarly, the peak 15-minute heat flux entering 

the room through the ICF in summer was 2.2 W/m
2
, less than half the maximum predicted 15-

minute cooling season heat gain for a wall with no mass effect (5.6 W/m
2
). Thus, ICF walls have 

the potential to reduce the peak heating requirement of the furnace, and the peak cooling 

requirement of the air conditioning system. This may have implications for the sizing and cost of 

mechanical equipment. 

Some seasonal storage effects were shown through the comparison of the total monthly measured 

heat loss at the interior surface of the ICF with the expected heat flux without thermal mass 

effect.  In September, October, November and December, as the concrete cooled slowly, the 

average measured heat loss through the ICF was slightly less than the expected heat loss for a 

wall with no mass effect.  The effect reversed as the concrete mass was slow to warm up from 

February to June.  During this period, heat losses through the ICF wall are expected to be higher 

than heat losses for a similar wall with no mass effect. This seasonal effect was less than the 

impact of the mass on peak heat losses and gains.  

This analysis involved comparing the measured heat losses/gain through an ICF wall to the 

expected heat losses/gains through a wall with no mass effect and an identical steady state R-

value (RSI 3.77 [R21.4]).  

The study showed the importance of the location of the sensors and especially the heat flux 

transducers (HFTs).  Each side of the HFT should be in contact with homogeneous material. 

Once the positioning of the sensors was corrected, the heat flux transducers provided a good 

means of evaluating the performance of an ICF wall specimen. With a known R-value of the 

insulation in the ICF, thermocouples could also be used as an inexpensive alternative for 

determining heat flux analysis – this method was used to effectively predict heat flux in the first 

half of the experiment. 

The results from this field trial were used to benchmark the NRC-IRC hygrothermal model (Saber 

et al., 2011).  The present model will be used to conduct a parametric study in order to investigate 

the transient thermal response of full-scale ICF wall assemblies subjected to different cold and 

hot climate conditions of North America.  Future work could employ this model to explore the 

optimization of ICF construction for different climates and wall orientations.  Different 

thicknesses and distribution of the insulation layers could be explored as well. 

 

This experiment only examined a small section of ICF wall on a west façade. Performance on the 

whole house level will be affected by other factors including solar gains through windows, and 

the operating mode of the house (for example: the use of free cooling at night or thermostat 

setbacks).  Whole house modeling would be required to better understand the impact of ICF 

construction on annual energy consumption.  
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Appendix A - ICF Construction 

Preparing the FEWF site for ICF installation 
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ICF Assembly 
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Pouring the concrete – July 28th, 2009 
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ICF Installation – August 25th, 2009 (after 28 days of curing) 
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Finishing details – Exterior 
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Finishing details – Interior 
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Heat Flux Sensors 
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Repositioning the Heat Flux Transducers 
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